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Abstract. We consider graviton-induced bremsstrahlung at future e+e− colliders in both the ADD and
RS models, with emphasis on the photon perpendicular momentum and angular distribution. The photon
spectrum is shown to be harder than in the standard model, and there is an enhancement for photons
making large angles with respect to the beam. In the ADD scenario, the excess at large photon perpendicular
momenta should be measurable for values of the cut-off up to about twice times the CM energy. In the
RS scenario, radiative return to graviton resonances below the CM energy can lead to large enhancements
of the cross section.

1 Introduction

Early ideas on brane world scenarios date back to more
than 15 years ago [1, 2]. In recent years, more predictive
and explicit scenarios involving extra dimensions have been
proposed [3–7]. As opposed to string theory with tiny com-
pactification scales of O(10−35 m), there is now a large
number of theories which actually will be tested in the
current and next generation of experiments.

Here we shall consider two of these scenarios, namely
the Arkani-Hamed-Dimopoulos-Dvali (ADD) [3] and the
Randall-Sundrum (RS) scenario [6], and investigate some
signals characteristic of such models at possible future elec-
tron-positron linear colliders like TESLA [8] and CLIC [9].

The most characteristic feature of these models is that
they predict the existence of massive gravitons, which may
either be emitted into the final state (leading to events with
missing energy and momentum), or exchanged as virtual in-
termediate states. We shall here focus on the effects of such
massive graviton exchange on the bremsstrahlung process:

e+e− → µ+µ−γ, (1.1)

for which the basic electroweak contributions are
well known [10].

Due to an extra photon in the final state, this pro-
cess has a reduced cross section as compared to two-body
final states like µ+µ− and γγ and is unlikely to be the
discovery channel, but it may provide additional confirma-
tion if a signal should be observed in the two-body final
states. In particular, the presence of additional Feynman
diagrams, without the infrared and collinear singularities
of the standard model (SM), leads one to expect a harder
photon spectrum.

We shall first, in Sect. 2, present the differential cross
section for the process (1.1). Integrated cross sections as
well as photon perpendicular momentum and angular dis-
tributions will be discussed. Then, in Sects. 3 and 4, we

specialize to the ADD and RS scenarios, by performing
sums over the respective KK towers. In Sect. 5 we summa-
rize our conclusions.

2 Graviton-induced bremsstrahlung

In this section we present the cross section for the pro-
cess (1.1), taking into account the s-channel exchange of
the photon, the Z and a single graviton of mass mn and
width Γn. These results are for the differential cross section
very similar to those obtained for graviton exchange in the
analogous process qq̄ → e+e−γ [11], and will in Sects. 3
and 4 be adapted to the ADD and RS scenarios.

2.1 Differential cross sections

The cross section for the process (1.1) is determined by the
Feynman diagrams of Fig. 1 (“set A”, initial state radiation,
ISR) and Fig. 2 (“set B”, final state radiation, FSR), in
addition to the well known SM diagrams which are obtained
by substituting the graviton with either a photon or a Z
in diagrams (1) and (2) of sets A and B. The SM diagrams
are referred to as “sets Cγ”, “CZ” (both ISR), “Dγ”, and
“DZ” (both FSR). It is convenient to separate ISR from
FSR since, in the case of ISR, the graviton propagator does
not carry all the momentum of the electron-positron pair.
In fact, this is the reason the two diagrams labeled (4) have
been classified as ISR and FSR as given in Figs. 1 and 2.

We shall here present the different contributions to the
differential cross section. Let the incident momenta be k1
(e−) and k2 (e+), and the outgoing momenta be p1 (µ−),
p2 (µ+) and k (γ), with E1, E2 and ω the corresponding
final-state energies. Then, we let x1, x2 and x3 denote the
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Fig. 1. Feynman diagrams for ISR in e+e− → µ+µ−γ. We refer
to these diagrams as “set A”. The corresponding SM diagrams,
“set Cγ” and “set CZ”, can be obtained by substituting a photon
or a Z for the graviton in diagrams (1) and (2)
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Fig. 2. Feynman diagrams for FSR. We shall refer to these
as “set B”. The SM diagrams, “set Dγ” and “set DZ” can be
obtained by substituting a photon or a Z for the graviton in
diagrams (1) and (2)

fractional energies of the muons and the photon:

x1 = E1/
√

s,

x2 = E2/
√

s,

x3 = ω/
√

s, 0 ≤ xi ≤ 1
2 ,

(2.1)

with x1 + x2 + x3 = 1. The square of the center of mass
energy is s ≡ (k1 + k2)2 = (p1 + p2 + k)2 and we denote
s3 ≡ (p1 + p2)2 = (1 − 2x3)s. Furthermore, we let η =
x1 − x2.

As shown in Fig. 3, we define the scattering angle θ as
the angle between the incoming electron and the outgoing
photon. When the polar angle is measured with respect to
the photon momentum (as in Fig. 3), the forward-backward
asymmetry vanishes.Thiswould not be the case ifwe choose
a polar angle referring to a muon momentum.
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Fig. 3. Coordinate frame used to describe e+e− → µ+µ−γ.
The incident electron momentum is denoted k1, and k is the
photon momentum

Following the notation in [11], the different contribu-
tions to the cross section are referred to as

σee→µµγ = σ(G)
ee→µµγ + σ(SM)

ee→µµγ + σ(G,γ)
ee→µµγ + σ(G,Z)

ee→µµγ ,
(2.2)

where the first term is the graviton contribution (sets A
and B), the second term is the standard-model background
(sets C and D) and the last two are graviton-photon and
graviton–Z interference terms, respectively.

We shall first consider the graviton exchange diagrams,
introducing the following notation:

σ(G)
ee→µµγ = σAA + σAB + σBB , (2.3)

where A and B refer to the initial- and final-state radiation,
respectively. The corresponding differential cross section
contributions can now be expressed as

d3σAA

dx3dη d(cos θ)

=
ακ4s Q2

e

8192π2

s2
3

(s3 − m2
n)2 + (mnΓn)2

XAA(x3, η, cos θ),

d3σAB

dx3dη d(cos θ)
=

ακ4s QeQµ

2048π2

× Re
[

s3

s3 − m2
n − imnΓn

s

s − m2
n + imnΓn

]

×XAB(x3, η, cos θ),

d3σBB

dx3dη d(cos θ)
(2.4)

=
ακ4s Q2

µ

8192π2

s2

(s − m2
n)2 + (mnΓn)2

XBB(x3, η, cos θ).

In these expressions, α is the fine-structure constant and
Qe = Qµ = −1 is the electron and muon charge. (It is
convenient to distinguish these, in order to more easily
trace the origin of the different terms.) Furthermore, κ
denotes the strength of the graviton coupling (to be defined
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in Sects. 3 and 4 for the ADD and RS scenarios), and mn

and Γn the mass and width of the nth massive graviton.
The angular distributions, as well as the way in which the
energy is shared by the muons and the photon, are given
by the functions XAA(x3, η, cos θ), XAB(x3, η, cos θ) and
XBB(x3, η, cos θ) defined by (A.2) in Appendix A.

The denominator of XBB(x3, η, cos θ) [see (A.2)] ex-
hibits the familiar singularities in the infrared and col-
linear limits, s1 ≡ (p1 + k)2 = s(1 − 2x2) → 0, s2 ≡
(p2 + k)2 = s(1 − 2x1) → 0, as well as a collinear singu-
larity at s3 = s(1 − 2x3) → 0 due to the fourth Feynman
diagram. (Actually, also the ISR contributions in the SM
have this singularity, see (A.4), accompanied by a singu-
larity for small angles.) The additional singularity means
that there is a tendency to have events with hard photons,
like in the analogous hadronic process [11].

The cross sections for the pure SM background are

σ(SM)
ee→µµγ = σCC + σCD + σDD, (2.5)

where C and D refer to initial- and final-state radiation,
with the corresponding contributions to the differential
cross section given by

d3σCC

dx3dη d(cos θ)
=

α3Q2
e

2s
SCC(s3, s3),

d3σCD

dx3dη d(cos θ)
=

2α3QeQµ

s
SCD(s3, s),

d3σDD

dx3dη d(cos θ)
=

α3Q2
µ

2s
SDD(s, s). (2.6)

Here, the angular and energy distributions are given by

SCD(s3, s) = Q2
e Q2

µXCγDγ (x3, η, cos θ)

+ Qe Qµ Re χ(s)XCγDZ
(x3, η, cos θ)

+ Qe Qµ Re χ(s3)XCZDγ
(x3, η, cos θ) (2.7)

+ Re[χ∗(s3)χ(s)]XCZDZ
(x3, η, cos θ),

with SCC(s3, s3) and SDD(s, s) similarly obtained from
(2.7) by substituting (D, s) ↔ (C, s3). Furthermore, the
XCγDγ etc. are given by (A.4) and the Z propagator is
represented by

χ(s) =
1

sin2(2θW)
s

(s − m2
Z) + imZΓZ

, (2.8)

with mZ and ΓZ the mass and width of the Z boson, and
θW the weak mixing angle. Note that σCγCZ

= σCZCγ and
σDγDZ

= σDZDγ .
For the interference terms between graviton exchange

and the SM diagrams, we introduce the following notation:

σ(G,γ)
ee→µµγ = σACγ + σBDγ + σADγ + σBCγ ,

σ(G,Z)
ee→µµγ = σACZ

+ σBDZ
+ σADZ

+ σBCZ
. (2.9)

Like above, the subscripts indicate the diagram sets in-
volved. The corresponding differential cross section contri-
butions are given by

d3σACγ

dx3dη d(cos θ)
=

α2κ2 Q3
eQµ

32π

× Re
[

s3

s3 − m2
n + imnΓn

]
XACγ (x3, η, cos θ),

d3σACZ

dx3dη d(cos θ)
=

α2κ2 Q2
e

64π

× Re
[
χ∗(s3)

s3

s3 − m2
n + imnΓn

]
XACZ

(x3, η, cos θ),

d3σBDγ

dx3dη d(cos θ)
=

α2κ2 QeQ
3
µ

32π

× Re
[

s

s − m2
n + imnΓn

]
XBDγ

(x3, η, cos θ),

d3σBDZ

dx3dη d(cos θ)
=

α2κ2 Q2
µ

64π

× Re
[
χ∗(s)

s

s − m2
n + imnΓn

]
XBDZ

(x3, η, cos θ),

d3σADγ

dx3dη d(cos θ)
=

α2κ2 Q2
eQ

2
µ

128π

× Re
[

s3

s3 − m2
n + imnΓn

]
XADγ (x3, η, cos θ),

d3σADZ

dx3dη d(cos θ)
=

α2κ2 QeQµ

128π

× Re
[
χ∗(s)

s3

s3 − m2
n + imnΓn

]
XADZ

(x3, η, cos θ),

d3σBCγ

dx3dη d(cos θ)
=

α2κ2 Q2
eQ

2
µ

128π

× Re
[

s

s − m2
n + imnΓn

]
XBCγ

(x3, η, cos θ),

d3σBCZ

dx3dη d(cos θ)
=

α2κ2 QeQµ

128π
(2.10)

× Re
[
χ∗(s3)

s

s − m2
n + imnΓn

]
XBCZ

(x3, η, cos θ).

The XACγ etc. are given in Appendix A.
An overview of the notations used for the different con-

tributions to the cross section is given in Table 1.

2.2 Total cross section

To obtain the total cross section, we integrate the differen-
tial cross section presented in Sect. 2.1 within the follow-
ing limits:

σee→µµγ (2.11)

=
∫ 1−ccut

−1+ccut

d(cos θ)
∫ xmax

3

xmin
3

dx3

∫ x3−ycut

−x3+ycut

dη
d3σee→µµγ

dx3dη d(cos θ)
.

Since the detector has a “blind” region very close to the
beam pipe, we impose a cut, | cos θ| < 1− ccut, with ccut =
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Table 1. Notation used for different combinations of ampli-
tudes. Compare the labeling of diagrams in Figs. 1 and 2
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0.005, which translates into a lower bound on sin θmin � 0.1
or an angular cut of θmin � 100 mrad. This cut removes
the singularity due to initial-state radiation (recall that θ
is the angle between the photon and the incident beam).

The resolution cut, ycut = 0.005, is imposed to exclude
collinear events, i.e., by requiring si = (1 − 2xi)s > ycut s.
For fixed x3, this leads to |η| < x3−ycut, where η = x1−x2.
The variable x3 is bounded by the allowed values of si,
giving ycut < x3 < 1

2 (1 − ycut) ≡ xmax
3 .

As a result of the cut on si, the minimal photon momen-
tum is kmin = ycut

√
s. For

√
s = 500 GeV and the chosen

value for ycut, this becomes 2.5 GeV. In addition to this cut
we shall also require that the photon perpendicular mo-
mentum is subject to an absolute cut, k⊥ = k sin θ > kmin

⊥ .
Here we choose kmin

⊥ = ξcut
√

s, with ξcut = 0.005. For√
s = 500 GeV, kmin

⊥ = 2.5 GeV, which means that photons
with momentum kmin only survive this cut when sin θ = 1.
If sin θ = sin θmin, only photons of k > 25 GeV survive
the cuts.

When expressed in terms of the variables x3 and cos θ,
the k⊥ constraint becomes x3

√
1 − cos2 θ > ξcut. Thus, for

a given cos θ in the allowed range, we find

x3 > xmin
3 = max

(
ξcut√

1 − cos2 θ
, ycut

)
(2.12)

In order to exclude radiative return to the Z, we will
also consider the cut

s3 > (mZ + 3ΓZ)2 ≡ yrr
cuts. (2.13)

This implies

yrr
cut =

m2
Z

s

(
1 +

3ΓZ

mZ

)2

� 1.17 × m2
Z

s
, (2.14)

which for
√

s = 500 GeV gives yrr
cut � 0.039. This value will

modify the upper bound xmax
3 , which will become 1

2 (1 −
yrr
cut), but not affect the lower bound, xmin

3 , nor the limits
on η.

2.3 Photon perpendicular momentum distribution

It is instructive to consider the spectrum of the photon
perpendicular momentum, k⊥, since this has no analogue
in the two-body final state process. As anticipated above,
we expect it to be harder than in the QED case. The
relevant differential cross sections can be obtained from
the expressions in Sect. 2.1 upon a change of variables
from (x3, cos θ) → (k⊥, k‖). From the definitions, k⊥ =√

sx3 sin θ and k‖ =
√

sx3 cos θ, we get dx3d(cos θ) →
|J |dk‖dk⊥ with the Jacobian

|J | =
k⊥√
sk2 =

k⊥√
s(k2

⊥ + k2
‖)

. (2.15)

The photon perpendicular momentum spectrum is now
obtained from

dσee→µµγ

dk⊥
=

∫ kmax
‖

−kmax
‖

dk‖

∫ x3−ycut

−x3+ycut

dη
d3σee→µµγ

dk⊥dk‖dη
. (2.16)

Given some k⊥ within the allowed region ξcut
√

s < k⊥ <√
s

2 (1 − ycut), we find

|k‖| < kmax
‖ = (2.17)

min
(√

s

4
(1 − ycut)2 − k2

⊥,

√
s

2
(1 − ycut)(1 − ccut)

)
.

The resolution cut, ycut, and also the radiative-return cut,
yrr
cut, will be the same as for the total cross section, and

the radiative-return cut will affect both kmax
⊥ and kmax

‖ .

2.4 Photon angular distribution

For the two-body final states e+e− → µ+µ− and e+e− →
γγ, the QED angular distributions are given by the fa-
miliar 1 + cos2 θ and (1 + cos2 θ)/(1 − cos2 θ). For gravi-
ton exchange, the corresponding distributions become 1−
3 cos2 θ + 4 cos4 θ and 1 − cos4 θ (see e.g. [12]). In both
these cases, the higher powers are due to the spin-2 cou-
pling. For the three-body case, we get similar expressions
(see the appendix). Note that the ISR contribution has a
structure similar to that of the diphoton channel, with a
1−cos2 θ singularity in the denominator, whereas graviton
exchange gives quartic terms in cos θ.

In order to emphasize the photons originating from
graviton exchange over those fromthe collinear singularities
(dominated by the SM contributions), we will here consider
the angular distribution of the photon with respect to the
incident beam:

dσee→µµγ

d(cos θ)
=

∫ xmax
3

xmin
3

dx3

∫ x3−ycut

−x3+ycut

dη
d3σee→µµγ

dx3dη d(cos θ)
,

(2.18)
with the cuts as given above.
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Fig. 4.Total cross sections for e+e− →
µ+µ−γ versus MS , for

√
s = 0.5 and

1 TeV, and n = 2, 4 and 6, with (solid)
and without (dashed) radiative return
to the Z pole. The SM value is rep-
resented by a band corresponding to
Lint = 300 fb−1

3 The ADD scenario

We first turn our attention to the ADD scenario [3], where
there is essentially a continuum of massive graviton states
up to some cut-off MS , where a more fundamental theory,
presumably low-scale string physics, takes over. Following
the convention of [13], the coherent sum over all KK modes
in a tower is performed by substituting for the sum over
graviton propagators the following expression:

κ2

s − m2
n + imnΓn

(3.1)

≡ −iκ2D(s) −→∑
n

8πsn/2−1

Mn+2
S

[2I(MS/
√

s) − iπ],

with

I(MS/
√

s) (3.2)

=




−
n/2−1∑
k=1

1
2k

(
MS√

s

)2k

− 1
2

log
(

M2
S

s
− 1

)
,

n = even,

−
(n−1)/2∑

k=1

1
2k − 1

(
MS√

s

)2k−1

+
1
2

log
(

MS +
√

s

MS − √
s

)
,

n = odd,

for n extra dimensions.
Since the role of higher-order loop effects is rather un-

known [14], these expressions should not be taken too liter-
ally. However, in order to preserve the qualitative difference
between the two propagators D(s) and D(s3) (see (3.1)),
and thus more easily keep track of the contributions of
different Feynman diagrams, we shall use the expressions
of (3.2). In the approach of [15, 16] the n-dependence is
absorbed in the cut-off so that D(s) and D(s3) are indis-
tinguishable. For n = 4 and MS � √

s, the cut-off MS is
comparable to ΛT of [15] and MH of [16].

3.1 Total cross sections

InFigs. 4 and5,wepresent the total cross section [see (2.11)]
versus the UV cut-off MS , for n = 2, 4 and 6. (For n = 2,
this range of MS is actually in conflict with astrophysical
data [17].) Different collider energies are considered,

√
s =

0.5 and 1.0 TeV in Fig. 4, and 3.0 and 5.0 TeV in Fig. 5.
For

√
s = 3 and 5 TeV, radiative return to Z is already

excluded by the y cut, and therefore only one set of curves
is shown.

It is seen that the integrated cross sections can have a
significant enhancement over the SM result provided MS

is not too much above the actual CM energy. Also, we note
that removing the radiative return to the Z according to the
criterion (2.13), the cross section is reduced significantly.
Since this mostly affects the SM background, the relative
magnitude of the “signal” increases.

As a rough indication of the precision to be expected, we
display the 1σ statistical error band around the SM values,
corresponding to an integrated luminosity of 300 fb−1 for
the cases of

√
s = 0.5 and 1 TeV, and 1000 fb−1 for

√
s =

3 and 5 TeV (we take the efficiency to be 1 throughout
the paper). We note that the sensitivity of the integrated
cross section extends to values of

√
s that are a few times

the available CM energy. However, since it is a higher-
order process, suppressed by a factor of the order α/π, the
sensitivity does not compete with that of the two-body
final states [16,18,19].

3.2 Photon perpendicular momentum distributions

Because of the Feynman diagrams (3) and (4), the photon
tends to be harder than in QED or the SM [11]. This
is illustrated in Fig. 6 for

√
s = 0.5 TeV, where we show

dσee→µµγ/dk⊥ as given by (2.16) for n = 4 and MS =
1.5 TeV. The peak at the highest values of k⊥ ∼ 1

2

√
s is

due to radiative return to the Z. As can be seen in this
figure, radiative return mainly affects the SM background,
and can be removed by a cut on s3 [see (2.13)].
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Fig. 5. Total cross sections for
e+e− → µ+µ−γ versus MS , for

√
s =

3 and 5 TeV, and n = 2, 4, and 6. The
SM value is represented by a band
corresponding to Lint = 1000 fb−1
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s=0.5 TeV√

Fig. 6. Photon perpendicular momentum distribution for n =
4, with (upper) and without (lower curve) radiative return to
Z. The SM contribution is dotted

In order to give an idea how significant the difference
is, we also show in Figs. 7 and 8 bin-integrated k⊥ dis-
tributions, corresponding to an integrated luminosity of
300 fb−1 for 0.5 and 1 TeV, with a bin width of 50 GeV,

and an integrated luminosity of 1000 fb−1 for 3 and 5 TeV,
with a bin width of 100 GeV. In these figures, we have
taken n = 4 and selected values of MS , namely 1.5, 3, 8
and 12 TeV.

It is seen that, after the binning in k⊥, the excess of
the ADD + SM cross section over the SM cross section
remains significant for the considered luminosities. As an-
ticipated, the excess increases with k⊥, also with respect to
the statistical uncertainty, in particular after the removal
of radiative-return events. The quantitative benefit of this
radiative-return cut will of course depend on the integrated
luminosity and the cut parameter [see (2.13)] as well as on
MS . As mentioned above, for

√
s = 3 and 5 TeV, radiative

return to Z is already excluded by the y cut; thus only one
set of curves is displayed.

3.3 Photon angular distributions

Due to conventional ISR (diagrams (1) and (2) in Fig. 1),
the photon angular distributions are peaked near the beam
direction. This is the case for any s-channel exchange, and
stems from the collinear singularity of those diagrams. Sim-
ilarly, diagrams (1) and (2) in Fig. 2 (final-state radiation)
lead predominantly to photons close to the directions of
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Fig. 7. Photon perpendicular momentum
distributions for n = 4, with (upper) and
without (lower set of curves) radiative re-
turn to Z. The SM contribution is dis-
played with error bars (invisible in the
left panel) corresponding to 300 fb−1
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Fig. 9. Photon angular distribution for
√

s =
0.5 TeV. Left panel: SM (dotted), contribu-
tions with graviton-exchange involved (dash-
dotted), ADD + SM (solid). Radiative return
to the Z pole is excluded. Right panel: Ratio
(ADD + SM)/SM, with (solid) and without
(long-dashed) radiative return to the Z pole

the final-state muon momenta. On the other hand, the di-
agrams (3) and (4), for ISR as well as for FSR, do not
have such collinear singularities, and could therefore lead
to distinctive features, different from those of the SM.

We show in the left panel of Fig. 9 the photon angular
distribution for

√
s = 0.5 TeV, MS = 1.5 TeV and n = 4,

where radiative return to the Z has been excluded. As
suggested by the above discussion, the effect of the graviton
exchange ismostly to increase the distribution in the central
region, i.e., for photons making large angles with the beams.

The enhancement at large angles, with respect to the
SM, is more clearly seen in the right panel of Fig. 9, where
we show the ratio, (ADD + SM)/SM, with and without
radiative return to the Z. For the parameters chosen, there
is for photons perpendicular to the beam, an enhancement
of about 25%.

4 The RS scenario

The phenomenology of the RS scenario [6] differs from
that of the ADD scenario in several respects. This scenario
has two 3-branes separated in the fifth dimension, and
a non-factorizable geometry, which means that the four-
dimensional metric depends on the coordinate in the fifth
dimension. It gives rise to a tower of massive KK gravitons

with the mass of the nth resonance related to that of the
first one, m1, in the following way [20]:

mn =
xn

x1
m1, (4.1)

where xn are zeros of the Bessel function J1(xn) = 0, with
x1 � 3.83 (not to be confused with the energy fraction
carried by the µ−, also denoted x1). Therefore the mass
splittings in the RS model are non-equidistant. The mass
of the first resonance is assumed to be of the order of
TeV, so only a few resonances are within reach of collider
experiments. In Fig. 10 we show the lowest states for a
range of m1 values. Since there are only a few graviton
resonances kinematically available, the summation over
them is straightforward.

The RS scenario can for our purposes be parametrized
by two parameters, the mass of the lowest massive graviton,
m1, and k/MPl, a dimensionless quantity typically taken
in the range 0.01–0.1, effectively giving the strength of the
graviton coupling [20]. The parameter k here refers to the
curvature of the five-dimensional space and should not be
confused with the photon momentum, also denoted k.

Expressed in terms of RS parameters, the graviton cou-
pling, κ, of (2.4) and (2.10) becomes

κ =
√

2
x1

m1

k

MPl
, MPl =

MPl√
8π

= 2.4×1018 GeV, (4.2)
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and the widths of the resonances are given by [11,13,21]

Γn =
γG

10π
x2

nmn

(
k

MPl

)2

, (4.3)

where γG = 295/96 (for coupling to the SM particles only).

While an RS graviton couples like an ADD graviton
(apart from the strength), the over-all phenomenology is
rather different. For the two-body final states, the RS gravi-
tons, since they are very narrow, only contribute to the cross
section if the CM energy coincides with a graviton mass.
This restriction is lifted for the three-body final states con-
sidered here, since the diagrams of Fig. 1 (for ISR) may res-
onate when s3 has a suitable value (see (2.4)), i.e., radiative
return may lead to an enhancement of the cross section.

We shall below discuss total cross sections and photon
perpendicular momentum distributions. The angular dis-
tributions will not be displayed for the RS case; they are
very similar to the distributions shown for the ADD case. If√

s � mi, graviton exchange will dominate, which results
in a distribution like the dash-dotted one in Fig. 9. If we
are far away from any direct resonance, the distribution
will be a mixture of the SM and graviton distributions like
in the ADD case.

4.1 Total cross sections

In Figs. 11 and 12, we present the total cross sections for
the bremsstrahlung process (1.1) at four different collider
energies,

√
s = 0.5, 1, 3 and 5 TeV, as functions of m1, and

for different values of k/MPl = 0.01, 0.05 and 0.1.
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Fig. 11. Total cross sections for e+e− →
µ+µ−γ versus MS , for

√
s = 0.5 and 1 TeV,

with (solid) and without (dashed) radiative
return to the Z pole. Three values of k/MPl

are considered for each energy; from top
down: 0.1, 0.05 and 0.01. The SM contribu-
tion is represented by a band corresponding
to 300 fb−1
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Fig. 13. Photon perpendicular momentum
distributions for

√
s = 1 TeV. Radiative re-

turn to the Z is excluded. Left panel: Two val-
ues of m1 are considered, lower curves, m1 =
0.75 TeV, upper curve: m1 � 0.55 TeV chosen
such that m2 = 1 TeV. The graviton-related
contributions are dash-dotted, the SM contri-
bution is dotted. Right panel: Bin-integrated
k⊥ distribution for m1 = 0.75 TeV. The SM
distribution is shown with error bars corre-
sponding to Lint = 300 fb−1

Some of these figures have a lot of structure. Anticipat-
ing that values of m1 below the lowest considered CM accel-
erator energy will already be excluded, we show in Fig. 11
for

√
s = 0.5 TeV (left panel) only values of m1 such that

m1 >
√

s. However, if the resonance is reasonably broad
(high k/MPl), there can be a considerable increase of the
cross section for some range of m1 values well above the
CM energy. Like for the ADD case, exclusion of radiative
return to the Z leads to an improvement of the signal.

At the next higher energy studied,
√

s = 1 TeV (Fig. 11,
right panel), we consider a range of m1 values, below the
CM energy, as well as above it. Apart from the obvious
resonance peak when m1 � √

s, there is also a sharp peak
for values of m1 around 0.55 TeV. From Fig. 10 we see that
this corresponds to the second graviton, with mass m2,
being produced resonantly. We shall refer to both these
cases as “direct” resonances, since

√
s = mi for some i.

In Fig. 12, this phenomenon of producing higher reso-
nances is demonstrated for the CM energies of 3 and 5 TeV.
In the right panel of Fig. 12, for

√
s = 5 TeV, we see for

m1 � 1 TeV and large k/MPl an enhancement of the cross
section by more than two orders of magnitude. This is in
part caused by the higher resonances being close to each
other (and wide), such that several of them can interfere.
Also radiative return to lower states contributes, as dis-
cussed below.

In this same panel, we note that there is a significant
enhancement of the RS cross section in the region around
m1 = 4 TeV, which is not compatible with any direct res-
onance (when

√
s = 5 TeV). This enhancement is more

than what can be attributed to the width of the nearby
resonances, it is caused by diagrams where the s3-channel
may resonate, i.e., where

√
s3 � m1 and the remaining

energy is carried by the photon.

4.2 Photon perpendicular momentum distributions

In the photon perpendicular-momentum distribution, we
expect a harder spectrum than in the SM case, as was the
case for the ADD scenario. Furthermore, resonant produc-
tion of either the lowest (m1) or a higher resonance (mi)

can lead to a sharp edge for

k⊥ <∼
s − m2

i

2
√

s
, (4.4)

characteristic of radiative return to a lower state, mi <
√

s.
Figure 13 is devoted to k⊥ distributions for

√
s = 1 TeV,

two values of m1, and k/MPl = 0.05. The higher curves
in the left panel show k⊥ distributions for a reasonably
low value of m1, chosen such that the second resonance
coincides with the CM energy. The distribution is for all
k⊥ higher than that of the SM by more than one order
of magnitude, the excess increasing with k⊥. The small
structure at k⊥ ∼ 0.35 TeV is due to radiative return to the
lower resonance at m1 � 0.55 TeV, with the “resonant” k⊥
given by (4.4). The lower curves in the left panel correspond
to a value of m1 = 0.75 TeV for which there is no direct
resonance. Hence, the indirect effect of radiative return
becomes more visible, there is a distinct enhancement at
the value of k⊥ corresponding to (4.4).

In the right panel we show the binned distribution for
m1 = 0.75 TeV together with the SM prediction with er-
ror bars corresponding to Lint = 300 fb−1. The bin width
has been chosen as 25 GeV [8]. The enhancement related
to radiative return to the m1 is clearly visible above the
statistical noise.

In Fig. 14 we show k⊥ distributions for
√

s = 5 TeV
and two values of m1. The upper curves in the left panel
correspond to a value of m1 for which there is a direct
resonance corresponding to m5 =

√
s. The spectrum is

very hard, and small features corresponding to radiative
return to all the lower resonances are seen. The middle
curves,which are about anorder ofmagnitude above theSM
background (dotted), correspond to a value m1 = 1.25 TeV
for which there is no direct resonance. As can be seen from
Fig. 10, m1, m2, m3 and m4 are accessible, and show up as
peaks in the k⊥ distribution. In the right panel we show
the binned distribution for m1 = 1.25 TeV together with
the SM prediction with error bars corresponding to Lint =
1000 fb−1. The enhancements related to radiative return
to m1, . . . , m4 are clearly visible above the statistical noise.
Another distinctive feature is that the interference between
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Fig. 14. Photon perpendicular momentum
distributions. Radiative return to the Z is
excluded. Left panel: Two values of m1 are
considered, lower curves, m1 = 1.25 TeV, up-
per curve: m1 � 1.16 TeV is chosen such that
m5 = 5 TeV. The graviton-related contribu-
tions are dash-dotted, the SM contribution is
dotted. Right panel: Bin-integrated k⊥ distri-
bution for m1 = 1.25 TeV. The SM distribu-
tion is shown with error bars corresponding
to Lint = 1000 fb−1

different gravitons leads to a significant enhancement of the
cross section over the SM background for all values of k⊥.

5 Summary

While the three-body cross section is lower than those of
the corresponding two-body final states µ+µ− and γγ by
a factor of order α/π, and therefore is unlikely to be a
discovery channel for massive-graviton effects, it has some
distinctive features which differ from the SM and may
help distinguishing between the different scenarios. First
of all, the k⊥ distribution is harder than in the SM. This
applies to both the ADD and RS scenarios, and can be
particularly important in the RS scenario, if the graviton
has a moderately strong coupling (determined by k/MPl).
Also, the photon angular distribution can have a significant
enhancement at large angles.

In the ADD scenario, where the k⊥ distribution is rather
smooth, of the order of one year of running would be suf-
ficient to see this hardening of the photon spectrum, for
values of MS up to about twice the CM energy.

In the RS scenario, ISR opens up the possibility of ra-
diative return to the KK graviton resonances within the
kinematically accessible range. This can lead to character-
istic perpendicular-momentum distributions, and an in-
crease in the cross section even when the CM energy is far
away from any resonance.

Radiative return to the Z is also possible through ISR,
but can be removed by a cut. The statistical significance
of the signal can improve significantly when such a cut
is included.

Here we have considered a final state with a lepton
pair accompanied by a photon. It would also be of interest
to consider different final states like qq̄γ (two jets and a
photon) or even gluon bremsstrahlung, e+e− → qq̄g (three
jets) in future analyses. In the latter case, the result would
however be different from the case considered here (after the
trivial substitutions for other coupling constants and colour
factors). The reason for this difference is that the gluon
can only come from the quark line, the ISR contribution
would only yield photons, and therefore be of higher order
compared to e+e− → three jets.

Acknowledgements. This research has been supported in part
by the Research Council of Norway.

Appendix A:
Angular- and energy-distribution functions

The angular and energy distributions of the different con-
tributions to the cross section are in (2.4), (2.6) and (2.10)
expressed in terms of the functions XAA(x3, η, cos θ) etc.,
where η = x1 − x2. It is convenient to introduce the ab-
breviations:

za = 8x4
3 − 12x2

3 + 12x3 − 3, zj = 2x2
3 + 2x3 − 1,

zb = 3(1 − 2x3), zk = 4x2
3 + 4x3 − 3,

zc = 2x2
3 − 2x3 + 1, zl = 4x2

3 − 8x3 + 3,

zd = 4x2
3 − 2x3 + 1, zm = 4x2

3 − 5x3 + 3,

ze = 2(1 − x3)2, zn = 4x2
3 − 20x3 + 15,

zf = 4x2
3 − 10x3 + 5, zo = 8x3 − 3,

zg = 2x2
3 − 6x3 + 3, zp = 4x3 − 3,

zh = 4x2
3 − 14x3 + 7, zq = 6x2

3 − 7x3 + 3,

zi = 8x4
3 − 80x3

3

+180x2
3 − 140x3 + 35, zr = 24x2

3 − 40x3 + 15.

(A.1)

Here we give the functions defining the different contri-
butions. We start with pure graviton exchange [see (2.4)]:

XAA(x3, η, cos θ)

=
ã0(x3, η) + ã2(x3, η) cos2 θ + ã4(x3, η) cos4 θ

x6
3(1 − cos2 θ)

,

XAB(x3, η, cos θ)

= (1 − x3)
ã1(x3, η) cos θ + ã3(x3, η) cos3 θ

x5
3

,

XBB(x3, η, cos θ) (A.2)

=
ã0(x3, η) + ã2(x3, η) cos2 θ + ã4(x3, η) cos4 θ

x4
3(1 − 2x3)(x2

3 − η2)
,
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with

ã0(x3, η) = −η4za − η2x2
3zbzc + x4

3zdze,

ã1(x3, η) = −2η3zb + ηx2
3zb,

ã2(x3, η) = −2η4zbzf + 3η2x2
3zbzg − x4

3zbzc,

ã3(x3, η) = 2η3zh − 2ηx2
3zb,

ã4(x3, η) = η4zi − 2η2x2
3zbzf − x4

3za. (A.3)

Next we give the pure SM terms [see (2.6)]:

XCγCγ (x3, η, cos θ) =
b̃0(x3, η) + b̃2(x3, η) cos2 θ

x4
3(1 − 2x3)(1 − cos2 θ)

,

XCγCZ
(x3, η, cos θ) = XCZCγ

(x3, η, cos θ)

= vevµXCγCγ
+ aeaµ

b̃1(x3, η) cos θ

x4
3(1 − 2x3)(1 − cos2 θ)

,

XCZCZ
(x3, η, cos θ) = (a2

e + v2
e)(a2

µ + v2
µ)XCγCγ

+ 4aeaµvevµ
b̃1(x3, η) cos θ

x4
3(1 − 2x3)(1 − cos2 θ)

,

XCγDγ (x3, η, cos θ) = (1 − x3)
η cos θ

x3
3

,

XCγDZ
(x3, η, cos θ) = XCZDγ (x3, η, cos θ)

= (1 − x3)
vevµη cos θ − aeaµx3

x3
3

,

XCZDZ
(x3, η, cos θ)

= (1 − x3)
(a2

e + v2
e)(a2

µ + v2
µ)η cos θ − 4aeaµvevµx3

x3
3

,

XDγDγ
(x3, η, cos θ) =

b̃0(x3, η) + b̃2(x3, η) cos2 θ

x2
3(x

2
3 − η2)

,

XDγDZ
(x3, η, cos θ) = XDZDγ (x3, η, cos θ)

= vevµXDγDγ + aeaµ
b̃1(x3, η) cos θ

x2
3(x

2
3 − η2)

,

XDZDZ
(x3, η, cos θ) = (a2

e + v2
e)(a2

µ + v2
µ)XDγDγ

+ 4aeaµvevµ
b̃1(x3, η) cos θ

x2
3(x

2
3 − η2)

, (A.4)

with

b̃0(x3, η) = η2zj + x2
3zg,

b̃1(x3, η) = −4ηx3zc,

b̃2(x3, η) = η2zg + x2
3zj . (A.5)

Vector and axial couplings are normalized to vf = Tf −
2Qf sin2 θW, af = Tf , with Tf the isospin.

Then we list the graviton-SM interference terms. First
we have the pure ISR and FSR terms

XACγ
(x3, η, cos θ)

=
c̃1(x3, η) cos θ + c̃3(x3, η) cos3 θ

x5
3(1 − cos2 θ)

,

XACZ
(x3, η, cos θ)

= 2vevµXACγ + aeaµ
c̃0(x3, η) + c̃2(x3, η) cos2 θ

x5
3(1 − cos2 θ)

,

XBDγ
(x3, η, cos θ)

=
c̃1(x3, η) cos θ + c̃3(x3, η) cos3 θ

x3
3(x

2
3 − η2)

,

XBDZ
(x3, η, cos θ) (A.6)

= 2vevµXBDγ + aeaµ
c̃0(x3, η) + c̃2(x3, η) cos2 θ

x3
3(x

2
3 − η2)

,

with

c̃0(x3, η) = −3η2x3zc + x3
3zc,

c̃1(x3, η) = η3zb − x2
3ηzb,

c̃2(x3, η) = 9η2x3zc − 3x3
3zc,

c̃3(x3, η) = −η3zf + x2
3ηzb. (A.7)

Finally we have the graviton-SM interference terms
where one diagram is ISR and the other one is FSR. The
terms with graviton exchange in the ISR diagram are

XADγ (x3, η, cos θ)

= (1 − 2x3)
d̃0(x3, η) + d̃2(x3, η) cos2 θ

x4
3

,

XADZ
(x3, η, cos θ)

= vevµXADγ
+ aeaµ(1 − 2x3)

d̃1(x3, η) cos θ

x4
3

, (A.8)

with

d̃0(x3, η) = −η2zk − x2
3zl,

d̃1(x3, η) = 4ηx3zm,

d̃2(x3, η) = −η2zn − x2
3zk. (A.9)

The terms with graviton exchange in the FSR diagram are

XBCγ (x3, η, cos θ) =
ẽ0(x3, η) + ẽ2(x3, η) cos2 θ

x4
3(1 − 2x3)

, (A.10)

XBCZ
(x3, η, cos θ) = vevµXBCγ + aeaµ

ẽ1(x3, η) cos θ

x4
3(1 − 2x3)

,

with

ẽ0(x3, η) = −η2zo + x2
3zp,

ẽ1(x3, η) = 4ηx3zq,

ẽ2(x3, η) = −η2zr − x2
3zo. (A.11)
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